Abstract

An innovative integrated sensing platform for the detection of various chemical analytes via translating the photonic stop-band shift of a one-dimensional photonic crystal (PC) into an electrical current change is proposed. The miniaturized sensing platform features an organic light-emitting diode (OLED) as a light source and an organic photodetector (OPD) as a light sensor and allows for the detection of ethanol vapor concentrations down to ≈ 10 parts per million (ppm) in nitrogen, which corresponds to a stop-band shift of ≈ 27 pm. The resolution of the proposed platform exceeds the capabilities of most commercial spectrometers and by far the human eye, while, at the same time, such a sensor is less expensive and less power consuming than a spectrometer. The presented setup is generic and can detect optical changes in the transmission of PCs, which can be induced by both vapor adsorption or by a liquid analyte, as demonstrated with a microfluidic setup.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call