Abstract
BackgroundThe premise behind static foot classification suggests structure dictate’s function. However, the validity of this has been challenged, as weak association between static foot type and dynamic motion exists. This has led to calls for dynamic assessments and classification of feet based on functional motion, yet methods to do this have been seldom explored. Research questionWithin a group of runners do homogenous sub-groups of ankle joint complex (AJC) frontal plane motion exist? MethodsA k means clustering analysis was conducted on the frontal plane AJC motion patterns of a group of healthy adults running barefoot (n = 42) to identify functional movement groups. Once identified, statistical parametric mapping was employed to determine the differences between clusters across stance. The identified clusters were used to determine dynamic foot type; an agreement analysis was conducted between the newly defined foot types and the Foot Posture Index (FPI-6). ResultsTwo distinct clusters were identified. Waveform analysis identified that cluster 1 displayed significantly (p < 0.001) less AJC eversion between 0% and 97% of the stance phase compared to cluster 2, with the differences between clusters associated with large effect sizes (g > 1). Based on the displayed kinematic profiles, cluster 1 was defined as a Neutral Dynamic Foot Type (NeutralDFT), and cluster 2 a Pronated Dynamic Foot Type (Pronated DynamicDFT). The newly defined foot type measure had only a slight agreement (κ = 0.08) with the FPI-6. SignificanceWe demonstrated a protocol to classify a runner’s foot type derived directly from AJC motion during running. Poor agreement between the dynamic and static classification measures further evidence that these assessments are not analogous. Our results question the validity of static classification when looking to characterise the foot during running, suggesting dynamic assessments are more appropriate to reflect the foots functional response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.