Abstract

BackgroundComorbidity patterns of childhood infections, atopic diseases, and adverse childhood experiences (ACE) are related to immune system programming conditions. The aim of this study was to make a step beyond the hygiene hypothesis and to comprehensively classify these patterns with latent class analysis (LCA). A second aim was to characterize the classes by associations with immunological, clinical, and sociodemographic variables.MethodsLCA was applied to data from the CoLaus|PsyCoLaus study (N = 4874, age range 35–82 years) separately for men and women. It was based on survey information on chickenpox, measles, mumps, rubella, herpes simplex, pertussis, scarlet fever, hay fever, asthma, eczema, urticaria, drug allergy, interparental violence, parental maltreatment, and trauma in early childhood. Subsequently, we examined how immune-mediated classes were reflected in leukocyte counts, inflammatory markers (IL-1β, IL-6, TNF-α, hsCRP), chronic inflammatory diseases, and mental disorders, and how they differed across social classes and birth cohorts.ResultsLCA results with five classes were selected for further analysis. Latent classes were similar in both sexes and were labeled according to their associations as neutral, resilient, atopic, mixed (comprising infectious and atopic diseases), and ACE class. They came across with specific differences in biomarker levels. Mental disorders typically displayed increased lifetime prevalence rates in the atopic, the mixed, and the ACE classes, and decreased rates in the resilient class. The same patterns were apparent in chronic inflammatory diseases, except that the ACE class was relevant specifically in women but not in men.ConclusionsThis is the first study to systematically determine immune-mediated classes that evolve early in life. They display characteristic associations with biomarker levels and somatic and psychiatric diseases occurring later in life. Moreover, they show different distributions across social classes and allow to better understand the mechanisms beyond the changes in the prevalence of chronic somatic and psychiatric diseases.

Highlights

  • Dense, complex comorbidity networks—diseasomes [1]— exist both within and across chronic inflammatory diseases, neurodevelopmental/mental disorders, and, as well, between them and infections and atopic diseases

  • Concepts related to the immune system programming [2] or to the neonatal window of opportunity [3] suggest that these comorbidity patterns reflect characteristic, lasting, and far-reaching imbalances in the immune system

  • We considered several fit indices: the Akaike information criterion (AIC), the Bayesian information criterion (BIC), and the sample size-adjusted BIC (ABIC) and in addition the Lo-Mendell-Rubin likelihood ratio test (LMR-LRT) [44]

Read more

Summary

Introduction

Complex comorbidity networks—diseasomes [1]— exist both within and across chronic inflammatory diseases, neurodevelopmental/mental disorders, and, as well, between them and infections and atopic diseases. This study focused on comorbidity patterns of infectious and atopic diseases usually emerging early in life. The hygiene [4] or, rather, the “Old Friends” hypothesis [5] has postulated that continuing or frequent low-level exposure to a variety of microbial and helminthic pathogens (the “Old Friends”) in infancy and early childhood boosts the immune system while at the same time improves its capacity for inflammation control. Modern improvements in hygiene levels are believed to have changed children’s immune system programming patterns and to have contributed to the increasing rates of atopic diseases. Comorbidity patterns of childhood infections, atopic diseases, and adverse childhood experiences (ACE) are related to immune system programming conditions. The aim of this study was to make a step beyond the hygiene hypothesis and to comprehensively classify these patterns with latent class analysis (LCA). A second aim was to characterize the classes by associations with immunological, clinical, and sociodemographic variables

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.