Abstract

This paper discusses a steady-state equilibrium configuration and a set of linearized equations of motion for the dynamic analysis of a semi-circular fluid-conveying pipe. Through application of the perturbation method to the equations of motion for a semi-circular pipe, new nonlinear equilibrium equations were derived and the equations of motion were linearized around the equilibrium configuration of the pipe. The equilibrium configurations obtained from the derived nonlinear equilibrium equations were compared to configurations from the linear equilibrium equations of other researchers. Additionally, the natural frequencies computed in this study were compared with the frequencies presented in a previous study. It was found that the steady-state equilibrium configuration should be determined using the proposed nonlinear equilibrium equations rather than previous linear equilibrium equations. Furthermore, it was shown that the natural frequencies computed with the proposed equilibrium equations were more accurate than the frequencies of other studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.