Abstract

In this paper, we consider the numerical solution of the time‐fractional telegraph equation with a nonlocal boundary condition. A novel barycentric Lagrange interpolation collocation method is developed to solve this equation. Two difficulties have been sorted: the singularity of the integration and the higher accuracy. At the same, we put forward a steady barycentric Lagrange interpolation technique to overcome the new “Runge” phenomenon in computation. Error estimates of the barycentric Lagrange interpolation and the time‐fractional telegraph system for the present method are presented in Sobolev spaces. High convergence rates of the proposed method are obtained and are consisted with the numerical values. Especially in the time dimension, we get the error bound, for h‐refinement and for nt‐density in the L2 norms. The numerical results obtained show that the proposed numerical algorithm is accurate and computationally efficient for solving time‐fractional telegraph equation. Experiments demonstrate the high convergence rates of the proposed method are consisted with the theoretical values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call