Abstract
As a primary source of lycopene in the human diet, fleshy fruits synthesize this compound both de novo and via chlorophyll metabolism during ripening. SlSGR1 encodes a STAY-GREEN protein that plays a critical role in the regulation of chlorophyll degradation in tomato leaves and fruits. We report that SlSGR1 can regulate tomato (Solanum lycopersicum) lycopene accumulation through direct interaction with a key carotenoid synthetic enzyme SlPSY1, and can inhibit its activity. This interaction with SlSGR1 mediates lycopene accumulation during tomato fruit maturation. We confirmed this inhibitory activity in bacteria engineered to produce lycopene, where the introduction of SlSGR1 reduced dramatically lycopene biosynthesis. The repression of SlSGR1 in transgenic tomato fruits resulted in altered accumulation patterns of phytoene and lycopene, whilst simultaneously elevating SlPSY1 mRNA accumulation and plastid conversion at the early stages of fruit ripening, resulting in increased lycopene and β-carotene (four- and nine-fold, respectively) in red ripe fruits. SlSGR1 influences ethylene signal transduction via the altered expression of ethylene receptor genes and ethylene-induced genes. Fruit shelf-life is extended significantly in SlSGR1-repressed tomatoes. Our results indicate that SlSGR1 plays a pivotal regulatory role in color formation and fruit ripening regulation in tomato, and further suggest that SlSGR1 activity is mediated through direct interaction with PSY1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.