Abstract
Side-channel attacks (SCAs) exploit leakage from the physical implementation of cryptographic algorithms to recover the otherwise secret information. In the last decade, popular SCAs like differential power analysis (DPA) and correlation power analysis (CPA) have been invented and demonstrated to be realistic threats to many critical embedded systems. However, there is still no sound and provable theoretical model that illustrates precisely what the success of these attacks depends on and how. Based on the maximum likelihood estimation theory, this paper proposes a general statistical model for side-channel attack analysis that takes characteristics of both the physical implementation and cryptographic algorithm into consideration. The model establishes analytical relations between the success rate of attacks and the cryptographic system. For power analysis attacks, the side-channel characteristic of the physical implementation is modeled as signal-to-noise ratio (SNR), which is the ratio between the single-bit unit power consumption and the standard deviation of power distribution. The side-channel property of the cryptographic algorithm is extracted by a novel algorithmic confusion analysis. Experimental results of DPA and CPA on both DES and AES verify this model with high accuracy and demonstrate effectiveness of the algorithmic confusion analysis and SNR extraction. We expect the model to be extendable to other SCAs, like timing attacks, and would provide valuable tools for evaluating cryptographic system’s resistance to those SCAs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.