Abstract

We present a theory, based on statistical mechanics, to evaluate analytically the performance of uncoded, fully synchronous, randomly spread code-division multiple-access (CDMA) multiuser detectors with additive white Gaussian noise (AWGN) channel, under perfect power control, and in the large-system limit. Application of the replica method, a tool developed in the literature of statistical mechanics, allows us to derive analytical expressions for the bit-error rate, as well as the multiuser efficiency, of the individually optimum (IO) and jointly optimum (JO) multiuser detectors over the whole range of noise levels. The information-theoretic capacity of the randomly spread CDMA channel and the performance of decorrelating and linear minimum mean-square error (MMSE) detectors are also derived in the same replica formulation, thereby demonstrating validity of the statistical-mechanical approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.