Abstract
We present a method for the generation of points in space needed to create training data for fitting of nonlinear parametric models. This method uses statistical information extracted from an initial fit on a sparse grid to select optimal grid points in an iterative manner and is, therefore, called the iterative variance minimizing grid approach. We demonstrate the method in the case of six-dimensional intermolecular potential energy surfaces (PESs) fitted to ab initio computed interaction energies. The number of required grid points is reduced by roughly a factor of two in comparison to alternative systematic sampling methods. The method is not limited to fitting PESs and can be applied to any cases of fitting parametric models where data points may be chosen freely but are expensive to obtain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.