Abstract
We explore a probabilistic model of an artistic text: words of the text are chosen independently of each other in accordance with a discrete probability distribution on an infinite dictionary. The words are enumerated 1, 2, $\ldots$, and the probability of appearing the $i$'th word is asymptotically a power function. Bahadur proved that in this case the number of different words depends on the length of the text is asymptotically a power function, too. On the other hand, in the applied statistics community, there exist statements supported by empirical observations, the Zipf's and the Heaps' laws. We highlight the links between Bahadur results and Zipf's/Heaps' laws, and introduce and analyse a corresponding statistical test.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.