Abstract

AbstractKinetic‐size magnetic holes (KSMHs) in the turbulent magnetosheath are statistically investigated using high time resolution data from the Magnetospheric Multiscale mission. The KSMHs with short duration (i.e., <0.5 s) have their cross section smaller than the ion gyroradius. Superposed epoch analysis of all events reveals that an increase in the electron density and total temperature significantly increases (resp. decrease) the electron perpendicular (resp. parallel) temperature and an electron vortex inside KSMHs. Electron fluxes at ~90° pitch angles with selective energies increase in the KSMHs are trapped inside KSMHs and form the electron vortex due to their collective motion. All these features are consistent with the electron vortex magnetic holes obtained in 2‐D and 3‐D particle‐in‐cell simulations, indicating that the observed KSMHs seem to be best explained as electron vortex magnetic holes. It is furthermore shown that KSMHs are likely to heat and accelerate the electrons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.