Abstract

Despite intensive studies of kink oscillations of coronal loops in the last decade, a large scale statistically significant investigation of the oscillation parameters has not been made using data from the Solar Dynamics Observatory (SDO). We carry out a statistical study of kink oscillations using Extreme Ultra-Violet (EUV) imaging data from a previously compiled catalogue. We analysed 58 kink oscillation events observed by the Atmospheric Imaging Assembly (AIA) onboard SDO during its first four years of operation (2010-2014). Parameters of the oscillations, including the initial apparent amplitude, period, length of the oscillating loop, and damping are studied for 120 individual loop oscillations. Analysis of the initial loop displacement and oscillation amplitude leads to the conclusion that the initial loop displacement prescribes the initial amplitude of oscillation in general. The period is found to scale with the loop length, and a linear fit of the data cloud gives a kink speed of Ck =(1330+/-50) km s-1 . The main body of the data corresponds to kink speeds in the range Ck =(800-3300) km s-1. Measurements of 52 exponential damping times were made, and it was noted that at least 22 of the damping profiles may be better approximated by a combination of non-exponential and exponential profiles, rather than a purely exponential damping envelope. There are an additional 10 cases where the profile appears to be purely non-exponential, and no damping time was measured. A scaling of the exponential damping time with the period is found, following the previously established linear scaling between these two parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call