Abstract

Trojans are small bodies in planetary Lagrangian points. In our solar system, Jupiter has the largest number of such companions. Their existence is assumed for exoplanetary systems as well, but none has been found so far. We present an analysis by super-stacking $\sim4\times10^4$ Kepler planets with a total of $\sim9\times10^5$ transits, searching for an average trojan transit dip. Our result gives an upper limit to the average Trojan transiting area (per planet) corresponding to one body of radius $<460$km at $2\sigma$ confidence. We find a significant Trojan-like signal in a sub-sample for planets with more (or larger) Trojans for periods $>$60 days. Our tentative results can and should be checked with improved data from future missions like PLATO2.0, and can guide planetary formation theories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.