Abstract
The adversarial vulnerability of convolutional neural networks (CNNs) refers to the performance degradation of CNNs under adversarial attacks, leading to incorrect decisions. However, the causes of adversarial vulnerability in CNNs remain unknown. To address this issue, we propose a unique cross-scale analytical approach from a statistical physics perspective. It reveals that the huge amount of nonlinear effects inherent in CNNs is the fundamental cause for the formation and evolution of system vulnerability. Vulnerability is spontaneously formed on the macroscopic level after the symmetry of the system is broken through the nonlinear interaction between microscopic state order parameters. We develop a cascade failure algorithm, visualizing how micro perturbations on neurons' activation can cascade and influence macro decision paths. Our empirical results demonstrate the interplay between microlevel activation maps and macrolevel decision-making and provide a statistical physics perspective to understand the causality behind CNN vulnerability. Our work will help subsequent research to improve the adversarial robustness of CNNs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on neural networks and learning systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.