Abstract

Cycle-accurate simulation is the dominant methodology for processor design space analysis and performance prediction. However, with the prevalence of multi-core, multi-threaded architectures, this method has become highly impractical as the sole means for design due to its extreme slowdowns. We have developed a statistical technique for modeling multicore processors that is based on Monte Carlo methods. Using this method, processor models of contemporary architectures can be developed and applied to performance prediction, bottleneck detection, and limited design space analysis. To date, we have accurately modeled the IBM Cell, the Intel Itanium, and the Sun Niagara 1 and Niagara 2 processors [23, 22, 8]. In this paper, we present a work in progress which is applying this methodology to an out-of-order execution processor. We present the initial single-core model and results for the AMD Barcelona (Opteron) processor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.