Abstract

Outbreaks of poliomyelitis in African countries that were previously free of wild-type poliovirus cost the Global Polio Eradication Initiative US$850 million during 2003-2009, and have limited the ability of the program to focus on endemic countries. A quantitative understanding of the factors that predict the distribution and timing of outbreaks will enable their prevention and facilitate the completion of global eradication. Children with poliomyelitis in Africa from 1 January 2003 to 31 December 2010 were identified through routine surveillance of cases of acute flaccid paralysis, and separate outbreaks associated with importation of wild-type poliovirus were defined using the genetic relatedness of these viruses in the VP1/2A region. Potential explanatory variables were examined for their association with the number, size, and duration of poliomyelitis outbreaks in 6-mo periods using multivariable regression analysis. The predictive ability of 6-mo-ahead forecasts of poliomyelitis outbreaks in each country based on the regression model was assessed. A total of 142 genetically distinct outbreaks of poliomyelitis were recorded in 25 African countries, resulting in 1-228 cases (median of two cases). The estimated number of people arriving from infected countries and <5-y childhood mortality were independently associated with the number of outbreaks. Immunisation coverage based on the reported vaccination history of children with non-polio acute flaccid paralysis was associated with the duration and size of each outbreak, as well as the number of outbreaks. Six-month-ahead forecasts of the number of outbreaks in a country or region changed over time and had a predictive ability of 82%. Outbreaks of poliomyelitis resulted primarily from continued transmission in Nigeria and the poor immunisation status of populations in neighbouring countries. From 1 January 2010 to 30 June 2011, reduced transmission in Nigeria and increased incidence in reinfected countries in west and central Africa have changed the geographical risk of polio outbreaks, and will require careful immunisation planning to limit onward spread. Please see later in the article for the Editors' Summary.

Highlights

  • The success of the oral poliovirus vaccine (OPV) in eliminating polio in the Americas led to a commitment by the governments of the world to eradicate polio at the World Health Assembly in 1988

  • From 1 January 2010 to 30 June 2011, reduced transmission in Nigeria and increased incidence in reinfected countries in west and central Africa have changed the geographical risk of polio outbreaks, and will require careful immunisation planning to limit onward spread

  • Estimates of incidence in the African continent are affected by substantial under-reporting; 4,546 cases were reported in Africa in 1988, and by 2009 this was reduced to 693 cases [2]

Read more

Summary

Introduction

The success of the oral poliovirus vaccine (OPV) in eliminating polio in the Americas led to a commitment by the governments of the world to eradicate polio at the World Health Assembly in 1988. Estimates of incidence in the African continent are affected by substantial under-reporting; 4,546 cases were reported in Africa in 1988, and by 2009 this was reduced to 693 cases [2] This decrease in reported cases has been accompanied by a marked reduction in the geographic extent of endemic areas, such that by 2006 just four countries had yet to interrupt indigenous wild-type poliovirus transmission worldwide, and in Africa only Nigeria was endemic for polio. Outbreaks of poliomyelitis in African countries that were previously free of wild-type poliovirus cost the Global Polio Eradication Initiative US$850 million during 2003–2009, and have limited the ability of the program to focus on endemic countries. Continued circulation of wild polioviruses in Nigeria and India resulted in reinfection of 19 African countries in 2009 and reestablishment of polio transmission in four countries. The researchers develop a statistical model of the spread of wild polioviruses in Africa and assess its ability to predict polio outbreaks in individual African countries

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.