Abstract

A statistical method for exploratory data analysis based on 2D and 3D area under curve (AUC) diagrams was developed. The method was designed to analyze electroencephalogram (EEG), electromyogram (EMG), and tremorogram data collected from patients with Parkinson’s disease. The idea of the method of wave train electrical activity analysis is that we consider the biomedical signal as a combination of the wave trains. The wave train is the increase in the power spectral density of the signal localized in time, frequency, and space. We detect the wave trains as the local maxima in the wavelet spectrograms. We do not consider wave trains as a special kind of signal. The wave train analysis method is different from standard signal analysis methods such as Fourier analysis and wavelet analysis in the following way. Existing methods for analyzing EEG, EMG, and tremor signals, such as wavelet analysis, focus on local time–frequency changes in the signal and therefore do not reveal the generalized properties of the signal. Other methods such as standard Fourier analysis ignore the local time–frequency changes in the characteristics of the signal and, consequently, lose a large amount of information that existed in the signal. The method of wave train electrical activity analysis resolves the contradiction between these two approaches because it addresses the generalized characteristics of the biomedical signal based on local time–frequency changes in the signal. We investigate the following wave train parameters: wave train central frequency, wave train maximal power spectral density, wave train duration in periods, and wave train bandwidth. We have developed special graphical diagrams, named AUC diagrams, to determine what wave trains are characteristic of neurodegenerative diseases. In this paper, we consider the following types of AUC diagrams: 2D and 3D diagrams. The technique of working with AUC diagrams is illustrated by examples of analysis of EMG in patients with Parkinson’s disease and healthy volunteers. It is demonstrated that new regularities useful for the high-accuracy diagnosis of Parkinson’s disease can be revealed using the method of analyzing the wave train electrical activity and AUC diagrams.

Highlights

  • IntroductionThe paper provides a detailed description of the method used for analyzing the wave train electrical activity in biomedical signals

  • This article is an open access articleThe paper provides a detailed description of the method used for analyzing the wave train electrical activity in biomedical signals

  • The wave train analysis method differs from standard signal analysis methods such as Fourier analysis and wavelet analysis in that it addresses the generalized characteristics of the biomedical signal based on local time–frequency changes in the signal

Read more

Summary

Introduction

The paper provides a detailed description of the method used for analyzing the wave train electrical activity in biomedical signals. For analyzing EEG, EMG, and tremor signals have been developed. The existing methods for analyzing EEG, EMG, and tremor signals, such as wavelet analysis [26,27,28], focus on local time–frequency changes in the signal and, do not reveal the generalized properties of the signal. Other methods, such as standard Fourier analysis, ignore local time–frequency changes in the signal and, lose a large amount of information that existed in the signal

Methods
Findings
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.