Abstract
AbstractDrought is a slowly varying natural phenomenon and may have wide impacts on a range of sectors. Tremendous efforts have therefore been devoted to drought monitoring and prediction to reduce potential impacts of drought. Reliable drought prediction is critically important to provide information ahead of time for early warning to facilitate drought-preparedness plans. The U.S. Drought Monitor (USDM) is a composite drought product that depicts drought conditions in categorical forms, and it has been widely used to track drought and its impacts for operational and research purposes. The USDM is an assessment of drought condition but does not provide drought prediction information. Given the wide application of USDM, drought prediction in a categorical form similar to that of USDM would be of considerable importance, but it has not been explored thus far. This study proposes a statistical method for categorical drought prediction by integrating the USDM drought category as an initial condition with drought information from other sources such as drought indices from land surface simulation or statistical prediction. Incorporating USDM drought categories and drought indices from phase 2 of the North American Land Data Assimilation System (NLDAS-2), the proposed method is tested in Texas for 2001–14. Results show satisfactory performance of the proposed method for categorical drought prediction, which provides useful information to aid early warning for drought-preparedness plans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.