Abstract

It was recently conjectured that in generic quantum many-body systems, the spectral density of local operators has the slowest high-frequency decay as permitted by locality. We show that the infinite-temperature version of this ‘universal operator growth hypothesis’ holds for the quantum Ising spin model in d ⩾ 2 dimensions, and for the chaotic Ising chain (with longitudinal and transverse fields) in one dimension. Moreover, the disordered chaotic Ising chain that exhibits many-body localization can have the same high-frequency spectral density asymptotics as thermalizing models. Our argument is statistical in nature, and is based on the observation that the moments of the spectral density can be written as a sign-problem-free sum over paths of Pauli string operators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.