Abstract

We construct a model for a particle in the framework of the theory of Stueckelberg, Horwitz and Piron (SHP) as an ensemble of events subject to the laws of covariant classical equilibrium statistical mechanics. The canonical and grand canonical ensembles are constructed without an a priori constraint on the total mass of the system. We show that the total mass of the system, corresponding the mass of this particle is determined by a chemical potential. This model has the property that under perturbation, such as collisions in the SHP theory for which the final asymptotic mass of an elementary event is not constrained by the basic theory, the particle returns to its equilibrium mass value. A mechanism similar to the Maxwell construction for more than one equilibrium mass state may result in several possible masses in the final state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.