Abstract
We develop a statistical mechanical interpretation of algorithmic information theory by introducing the notion of thermodynamic quantities, such as free energy, energy, statistical mechanical entropy, and specific heat, into algorithmic information theory. We investigate the properties of these quantities by means of program-size complexity from the point of view of algorithmic randomness. It is then discovered that, in the interpretation, the temperature plays a role as the compression rate of the values of all these thermodynamic quantities, which include the temperature itself. Reflecting this self-referential nature of the compression rate of the temperature, we obtain fixed point theorems on compression rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.