Abstract
Synthesizing handwritten-style characters is an interesting issue in today’s handwriting analysis field. The purpose of this study is to artificially generate training data, foster a deep understanding of human handwriting, and promote the use of the handwritten-style computer fonts, in which the individuality or variety of the synthesized characters is considered important. Research considering such two properties together, however, is very rare. In this paper, a handwriting model is proposed to synthesize various handwritten characters while preserving the writer’s individuality from a limited number of training data, using a statistical approach. The proposed model is verified in single- and multiple-stroke characters, such as Arabic numbers, small English letters, and Japanese Kanji letters. Synthesized characters are evaluated in three ways. First, they are analyzed visually using the selected samples, and the relationship between the training and synthesized characters is explained. Second, the personalities and varieties of all the data are evaluated using a conventional writer verification method. Third, a questionnaire is developed and administered to evaluate the subjective responses of the users regarding the personal styles of the synthesized characters. The results prove that the proposed model stably synthesizes personalized characters by being invariant to the number of training data, whereas the variety increases gradually as the data increase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal on Document Analysis and Recognition (IJDAR)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.