Abstract
Abstract A new statistical downscaling (SD) scheme is proposed to predict summertime multisite rainfall measurements in China. The potential predictors are multiple large-scale variables from operational dynamical model output. A key step in this SD scheme is finding optimal predictors that have the closest and most stable relationship with rainfall at a given station. By doing so, the most robust signals from the large-scale circulation can be statistically projected onto local rainfall, which can significantly improve forecast skill in predicting the summer rainfall at the stations. This downscaling prediction is performed separately for each simulation with a leave-one-out cross-validation approach and an independent sample validation framework. The prediction skill scores exhibited at temporal correlation, anomaly correlation coefficient, and root-mean-square error consistently demonstrate that dynamical model prediction skill is significantly improved under the SD scheme, especially in the multimodel ensemble strategy. Therefore, this SD scheme has the potential to improve the operational skill when forecasting rainfall based on the coupled models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.