Abstract
Even if assessing binary classifications is a common task in scientific research, no consensus on a single statistic summarizing the confusion matrix has been reached so far. In recent studies, we demonstrated the advantages of the Matthews correlation coefficient (MCC) over other popular rates such as cross-entropy error, F1 score, accuracy, balanced accuracy, bookmaker informedness, diagnostic odds ratio, Brier score, and Cohen’s kappa. In this study, we compared the MCC to other two statistics: prevalence threshold (PT), frequently used in obstetrics and gynecology, and Fowlkes–Mallows index, a metric employed in fuzzy logic and drug discovery. Through the investigation of the mutual relations among three metrics and the study of some relevant use cases, we show that, when positive data elements and negative data elements have the same importance, the Matthews correlation coefficient can be more informative than its two competitors, even this time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.