Abstract

Flame retardant polymer composites are conventionally produced by extrusion processes where several compounding variables must be finely tuned in order to find the optimal balance between the needed flame retardant and mechanical properties. This work aims at the production of flame retardant and mechanically strong biocomposites based on thermoplastic starch, keratin fibers derived from tannery industry waste and aluminum trihydroxide by exploiting a statistical approach. The response surface methodology is applied to investigate the effects of compounding variables, aiming to minimize the total flaming time, maximize the tensile strength and reduce the aluminum trihydroxide content by replacing it with keratin fibers. The fiber length, blending temperature and rotational speed are found to produce fundamental interaction effects on the final properties of the flame retardant biocomposites. The applied statistical method is validated by the experimental results. The proposed approach can thus enable the production of sustainable biocomposites where sustainability, flame retardancy and mechanical properties are maximized.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.