Abstract

The response of time-domain electromagnetic induction (EMI) sensors, which have been used almost exclusively for landmine detection, is related to the amount of metal present in the object and its distance from the sensor. Unluckily, there is often a significant amount of metallic clutter in the environment that also induces an EMI response. Consequently, EMI sensors employing detection, algorithms based solely on metal content suffer from large false alarm rates. To mitigate this false alarm problem for mines with substantial metal content, statistical algorithms have been developed that exploit models of the underlying physics. In such models it is commonly assumed that the soil has a negligible effect on the sensor response, thus the object is modeled in space. We report on studies that were performed to test, the hypotheses that for broadband EMI sensors: 1) soil cannot be modeled as free space when the buried object has low metal content and 2) advanced signal processing algorithms can be applied to reduce the false alarm rates. Our results show that soil cannot be modeled as free space and that when modeling soil correctly our advanced algorithms reduced the false alarm probability by up to a factor of 10 in blind tests.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.