Abstract
Temperature variations can have significant effects on guide wave propagation, and therefore can increase the detection uncertainty of the structural health monitoring (SHM) system. The effect of this variation has been investigated for detecting impact damage in carbon fiber reinforced composites. Surface instrumented piezoelectric wafers are used in this work to detect the low velocity impact damage in a braided carbon fiber reinforced composite plate over a temperature range of 0 ⁰C to 60 ⁰C. The effects of temperature variation and thermal cycles on guided wave propagations in healthy composite plates are characterized first. The information is then used to develop a compensation algorithm to minimize the thermal effects on detection. A statistical damage detection and quantification approach is developed using and Auto-Regressive with eXogenous (ARX) model and local outlier analysis. The developed methodology is experimentally validated using the pitch-catch guided wave testing approach within the temperature range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.