Abstract

Non-conventional machining processes offer significant advantages over conventional ones, especially in terms of the productivity, cost, and surface integrity of the produced parts due to their higher flexibility. Abrasive waterjet machining, in particular, constitutes an ecologically friendly process with a negligible thermal impact on a workpiece, and it has considerable capabilities for obtaining the desired outcome by regulating some of its numerous parameters. Among these parameters, the abrasive type is particularly important due to its hardness, mesh size, and shape, which lead to considerable deviations on the obtained depth, kerf characteristics, and productivity. Thus, in this work, a comprehensive comparison is conducted on the use of garnet and silicon carbide particles for the slot milling of the Ti-6Al-4V alloy under different conditions. The capabilities of both abrasive materials are evaluated by statistical analysis regarding the depth of penetration, kerf width, kerf taper angle, and material removal rate (MRR), which are obtained under the same process conditions. Finally, a multi-objective optimization based on grey relational analysis (GRA) is performed for several different practical cases. It was found that, although silicon carbide is more efficient in optimizing individual process outputs, the use of a garnet abrasive can lead to considerably better trade-offs between two or more objectives of the machining process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.