Abstract
The use of mobile devices, including smartphones, tablets, smart watches and notebooks are increasing day by day in our societies. They are usually connected to the Internet and offer nearly the same functionality, same memory and same speed like a PC. To get more benefits from these mobile devices, applications should be installed in advance. These applications are available from third party websites, such as google play store etc. In existing mobile devices operating systems, Android is very easy to attack because of its open source environment. Android OS use of open source facilty attracts malware developers to target mobile devices with their new malicious applications having botnet capabilities. Mobile botnet is one of the crucial threat to mobile devices. In this study we propose a static approach towards mobile botnet detection. This technique combines MD5, permissions, broadcast receivers as well as background services and uses machine learning algorithm to detect those applications that have capabilities for mobile botnets. In this technique, the given features are extracted from android applications in order to build a machine learning classifier for detection of mobile botnet attacks. Initial experiments conducted on a known and recently updated dataset: UNB ISCX Android botnet dataset, having the combination of 14 different malware families, shows the efficiency of our approach. The given research is in progress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.