Abstract

Fair bandwidth sharing is important for the Internet architecture to be more accommodative of the heterogeneity. The Internet relies primarily on the end-systems to cooperatively deploy congestion control mechanisms for achieving high network utilization and some degree of fairness among flows. However, the cooperative behavior may be abandoned by some end-systems that act selfishly to be more competitive through bandwidth abuse. The result can be severe unfairness and even congestion collapse. Fairness-driven active queue management, thus, becomes essential for allocating the shared bottleneck bandwidth fairly among competing flows. This paper proposes a novel stateless active queue management algorithm, termed CHOKeH, to enforce fairness in bottleneck routers. CHOKeH splits the queue into dynamic regions at each packet arrival and treats each region differently for performing matched-drops using a dynamically updated drawing factor, which is based on the level of queue occupancy and the buffer size. In this way, CHOKeH can effectively identify and restrict unfair flows from dominating the bandwidth by discarding more packets from these flows. The performance of CHOKeH is studied through extensive simulations. The results demonstrate that CHOKeH is well suited for fair bandwidth allocation even in the presence of multiple unresponsive flows and across a wider range of buffer sizes. The results also show the ability of CHOKeH to provide inter-protocol and intra-protocols fairness and protection for short-lived flows. With a low per-packet-processing complexity, CHOKeH is amenable to implementation in core routers to offer an effective incentive structure for end-systems to self-impose some form of congestion control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.