Abstract

A state transition model for the optimization of query processing in a distributed database system is presented. The problem is parameterized by means of a state describing the amount of processing that has been performed at each site where the database is located. A state transition occurs each time a new join or semijoin is executed. Dynamic programming is used to compute recursively the costs of the states and the globally optimal solution, taking into account communication and local processing costs. The state transition model is general enough to account for the possibility of parallel processing among the various sites, as well as for redundancy in the database. The model also permits significant reductions of the necessary computations by taking advantage of simple additivity and site-uniformity properties of a cost model, and of clever strategies that improve on the basic dynamic programming algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.