Abstract
Adaptive filtering algorithms fall into four main groups: recursive least squares (RLS) algorithms and the corresponding fast versions; QR- and inverse QR-least squares algorithms; least squares lattice (LSL) and QR decomposition-based least squares lattice (QRD-LSL) algorithms; and gradient-based algorithms such as the least-mean square (LMS) algorithm. Our purpose in this article is to present yet another approach, for the sake of achieving two important goals. The first one is to show how several different variants of the recursive least-squares algorithm can be directly related to the widely studied Kalman filtering problem of estimation and control. Our second important goal is to present all the different versions of the RLS algorithm in computationally convenient square-root forms: a prearray of numbers has to be triangularized by a rotation, or a sequence of elementary rotations, in order to yield a postarray of numbers. The quantities needed to form the next prearray can then be read off from the entries of the postarray, and the procedure can be repeated; the explicit forms of the rotation matrices are not needed in most cases.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.