Abstract

Expansive soils exist in many countries worldwide, and their characteristics make them exceedingly difficult to engineer. Due to its significant swelling and shrinkage characteristics, expansive soil defies many of the stabilization solutions available to engineers. Differential heave or settlement occurs when expansive soil swells or shrinks, causing severe damage to foundations, buildings, roadways, and retaining structures. In such soils, it is necessary to construct a foundation that avoids the adverse effects of settlement. As a result, building the structure’s foundations on expansive soil necessitates special consideration. Helical piles provide resistance to uplift in light structures. However, they may not fully stabilize foundations in expansive soils. A granular anchor pile is another anchor technique that may provide the necessary resistance to uplift in expansive soils using simpler methods. This review and numerical study investigate the fundamental foundation treatments for expansive soils and the behavior of granular anchors and helical piles. Results indicate that granular anchor piles performed better than helical piles for uplift and settlement performance. For heave performance, the granular anchor and helical piles perform nearly identically. Both achieve heave reductions greater than 90% when L/H > 1.5 and D = 0.6 m.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call