Abstract

A state observer plays a vital role in the design of state feedback neuromodulation schemes used to prevent and treat neurological or psychiatric disorders. This paper aims to design a state observer to reconstruct all unmeasured states of the computational network model of neural populations that replicates patterns seen on the electroencephalogram by using the model inputs and outputs, as the theoretical basis for designing state feedback neuromodulation clinical schemes. The feasibility problem of linear matrix inequality conditions, which is the most important one for observer design of the computational network model of neural populations, is solved by using the input-output stability theory and the Lurie system theory. The observer matrices of the designed observer are formed by the optimal solution of the linear matrix inequality conditions. An illustrative example shows that the observer can simultaneously reproduce internal state variables of normal and lesion populations of the computational network model of neural populations under the background of focal origin brain dysfunction, and the designed observer has certain robustness toward input uncertainty and measurement noise. To the best of our knowledge, no observers have previously been designed for the computational network model of neural populations. The design of state feedback neuromodulation schemes based on the computational network model of neural populations is a new direction in the field of computational neuroscience.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.