Abstract
Chemical impacts on the environment are routinely assessed in single-species tests. They are employed to measure direct effects on nontarget organisms, but indirect effects on ecological interactions can only be detected in multispecies tests. Micro- and mesocosms are more complex and environmentally realistic, yet they are less frequently used for environmental risk assessment because resource demand is high, whereas repeatability and statistical power are often low. Test systems fulfilling regulatory needs (i.e., standardization, repeatability, and replication) and the assessment of impacts on species interactions and indirect effects are lacking. In the present study we describe the development of the TriCosm, a repeatable aquatic multispecies test with 3 trophic levels and increased statistical power. High repeatability of community dynamics of 3 interacting aquatic populations (algae, Ceriodaphnia, and Hydra) was found with an average coefficient of variation of 19.5% and the ability to determine small effect sizes. The TriCosm combines benefits of both single-species tests (fulfillment of regulatory requirements) and complex multispecies tests (ecological relevance) and can be used, for instance, at an intermediate tier in environmental risk assessment. Furthermore, comparatively quickly generated population and community toxicity data can be useful for the development and testing of mechanistic effect models. Environ Toxicol Chem 2018;37:1051-1060. © 2017 SETAC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.