Abstract

Human mitochondrial DNA (mtDNA) mutations are important for forensic identifications and mitochondrial disease diagnostics. Low-frequency mutations, heteroplasmies, or SNPs scattered throughout the DNA in the presence of a majority of mtDNA with the Cambridge Reference Sequence (CRS) are almost impossible to detect. Therefore, the National Institute of Science and Technology has developed heteroplasmic human mtDNA Standard Reference Material (SRM) 2394 to allow scientists to determine their sensitivity in detecting such differences. SRM 2394 is composed of mixtures ranging from 1/99 to 50/50 of two 285-bp PCR products from two cell lines that differ at one nucleotide position. Twelve laboratories using various mutation detection methods participated in a blind interlaboratory evaluation of a prototype of SRM 2394. Most of these procedures were unable to detect the mutation when present below 20%, an indication that, in many real-life cases, low-frequency mutations remain undetected and that more sensitive mutation detection techniques are urgently needed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.