Abstract
In this paper we propose a novel arbitrary high order accurate semi-implicit space–time discontinuous Galerkin method for the solution of the two dimensional incompressible Navier–Stokes equations on staggered unstructured triangular meshes. Isoparametric finite elements are used to take into account curved domain boundaries. The discrete pressure is defined on the primal triangular grid and the discrete velocity field is defined on an edge-based staggered dual grid. While staggered meshes are state of the art in classical finite difference approximations of the incompressible Navier–Stokes equations, their use in the context of high order DG schemes is novel and still quite rare. Formal substitution of the discrete momentum equation on the dual grid into the discrete continuity equation on the primary grid yields a very sparse four-point block system for the scalar pressure, which is conveniently solved with a matrix-free GMRES algorithm. Note that the same space–time DG scheme on a collocated grid would lead to ten non-zero blocks per element, since substituting the discrete velocity into the discrete continuity equation on a collocated mesh would involve also neighbors of neighbors. From numerical experiments we find that our linear system is well-behaved and that the GMRES method converges quickly even without the use of any preconditioner, which is a unique feature in the context of high order implicit DG schemes. A very simple and efficient Picard iteration is then used in order to derive a space–time pressure correction algorithm that achieves also high order of accuracy in time, which is in general a non-trivial task in the context of high order discretizations for the incompressible Navier–Stokes equations. The flexibility and accuracy of high order space–time DG methods on curved unstructured meshes allows to discretize even complex physical domains with very coarse grids in both, space and time. The use of a staggered grid allows to avoid the use of Riemann solvers in several terms of the discrete equations and significantly reduces the total stencil size of the linear system that needs to be solved for the pressure. The proposed method is verified for approximation polynomials of degree up to p=4 in space and time by solving a series of typical numerical test problems and by comparing the obtained numerical results with available exact analytical solutions or other numerical reference data.To the knowledge of the authors, this is the first time that a space–time discontinuous Galerkin finite element method is presented for the incompressible Navier–Stokes equations on staggered unstructured grids.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.