Abstract

Many of the existing models on stage structured populations are single species models or models which assume a constant resource supply. In reality, growth is a combined result of birth and death processes, both of which are closely linked to the resource supply which is dynamic in nature. From this basic standpoint, we formulate a general and robust predator-prey model with stage structure with constant maturation time delay (through-stage time delay) and perform a systematic mathematical and computational study. Our work indicates that if the juvenile death rate (through-stage death rate) is nonzero, then for small and large values of maturation time delays, the population dynamics takes the simple form of a globally attractive steady state. Our linear stability work shows that if the resource is dynamic, as in nature, there is a window in maturation time delay parameter that generates sustainable oscillatory dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.