Abstract

A new broad-spectrum responsive organic-inorganic hybrid photocatalyst (PI@BWO) was successfully prepared by in-situ growing Bi2WO6 nanosheets onto the surface of π-π stacking perylene imide. The obtained PI@BWO hybrids with different composition exhibited enhanced photocatalytic activity for Bisphenol A (BPA) degradation. Among them, 30% PI@BWO exhibited optimal photocatalytic degradation efficiency, which is 2.6 and 3.9 times higher than that of pristine PI and BWO, respectively. Furthermore, PI@BWO also performed good stability and recyclability. Remarkably, the π-conjugation of PI facilitated the separation of charge carriers and improved the utilization of sunlight for PI@BWO. The introduction of BWO nanosheets also enhanced the adsorption capacity for contaminants and provided much more plentiful active sites, promoting the next photocatalytic reaction. Most importantly, PI@BWO could produce abundant reactive species (such as 1O2 and ·OH) via the charge carrier transfer and energy transfer dual transfer approach, therefore leading to stronger oxidation ability. The photocatalytic degradation mechanism and pathway of the PI@BWO hybrids were finally proposed. Overall, this present work might provide a new insight into the designing and preparation of efficient organic-inorganic hybrid photocatalysts for environmental-friendly removal of hazardous organic pollutants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.