Abstract
This paper proposes a Stackelberg game approach to maximize the profit of the electricity retailer (utility company) and minimize the payment bills of its customers. The electricity retailer determines the retail price through the proposed smart energy pricing scheme to optimally adjust the real-time pricing with the aim to maximize its profit. The price information is sent to the customers through a smart meter. According to the announced price, the customers can automatically manage the energy use of appliances in the households by the proposed optimal electricity consumption scheduling system with the aim to minimize their electricity bills. We model the interactions between the retailer and its electricity customers as a 1-leader, N-follower Stackelberg game. At the leader's side, i.e., for the retailer, we adopt genetic algorithms to maximize its profit while at the followers' side, i.e., for customers, we develop an analytical solution to the linear programming problem to minimize their bills. Simulation results show that the proposed approach is beneficial for both the customers and the retailer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.