Abstract
This paper presents a novel approach to stabilize the output of video camera installed on a moving vehicle in a rugged environment. A 2.5D interframe motion model is proposed so that the stabilization system can perform in situations where significant depth changes are present and the camera has both rotation and translation. Inertial motion filtering is proposed in order to eliminate the vibration of the video sequences with enhanced perceptual properties. The implementation of this new approach integrates four modules: pyramid-based motion detection, motion identification and 2.5D motion parameter estimation, inertial motion filtering, and affine-based motion compensation. The stabilization system can smooth unwanted vibrations or shakes of video sequences and achieve real-time speed. We test the system on IBM PC compatible machines and the experimental results show that our algorithm outperforms many algorithms which require parallel pipeline image processing machines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Intelligent Transportation Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.