Abstract

An asymmetric memristive device fabricated with a titania (TiOx)-based switching layer deposited through atomic layer deposition with a thickness of ∼37 nm was investigated. X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy coupled with energy-dispersive x-ray spectroscopy were employed for device structural characterization. A unipolar resistive switching behavior (both at positive and negative voltages) was observed through the memristor’s current–voltage characteristics. A remarkably smaller forming voltage (from the top Pt electrode to the grounded Au electrode) of 0.46 V was achieved, while it approached (positive bias from the Au electrode and holding Pt electrode as grounded) 0.25 V, which is a much smaller forming voltage than has ever been reported for titanium-based oxides without doping. The retention and endurance characterization over 2000 switching cycles were satisfactory without degradation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.