Abstract
In this paper, a numerical method to obtain an unconditionally stable solution of the time domain electric field integral equation for arbitrary conducting thin wires is presented. The time-domain electric field integral equation (TD-EFIE) technique has been employed to analyze electromagnetic scattering and radiation problems from thin wire structures. However, the most popular method to solve the TD-EFIE is typically the marching-on in time (MOT) method, which sometimes may suffer from its late-time instability. Instead, we solve the time-domain integral equation by expressing the transient behaviors in terms of weighted Laguerre polynomials. By using these orthonormal basis functions for the temporal variation, the time derivatives can be handled analytically and stable results can be obtained even for late-time. Furthermore, the excitation source in most scattering and radiation analysis of electromagnetic systems is typically done using a Gaussian shaped pulse. In this paper, both a Gaussian pulse and other waveshapes like a rectangular pulse or a ramp like function have been used as excitations for the scattering and radiation of thin-wire antennas with and without junctions. The time-domain results are compared with the inverse discrete Fourier transform (IDFT) of a frequency domain analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.