Abstract

The slow photon effect in inverse opal photonic crystals represents a promising approach to manipulate the interactions between light and matter through the design of material structures. This study introduces a novel ordered inverse opal photonic crystal (IOPC) sensitized with perovskite quantum dots (PQDs), demonstrating its efficacy for efficient visible-light-driven H2 generation via water splitting. The rational structural design contributes to enhanced light harvesting. The sensitization of the IOPC with PQDs improves optical response performance and enhances photocatalytic H2 generation under visible light irradiation compared to the IOPC alone. The designed photoanode exhibits a photocurrent density of 3.42 mA cm-2 at 1.23 V vs RHE. This work advances the rational design of visible light-responsive photocatalytic heterostructure materials based on wide band gap metal oxides for photoelectrochemical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.