Abstract

A new parallel-in-time iterative method is proposed for solving the homogeneous second-order wave equation. The new method involves a coarse scale propagator, allowing for larger time steps, and a fine scale propagator which fully resolves the medium using finer spatial grid and uses shorter time steps. The fine scale propagator is run in parallel for short time intervals. The two propagators are coupled in an iterative way that resembles the standard parareal method [24]. We present a data-driven strategy in which the computed data gathered from each iteration are re-used to stabilize the coupling by minimizing the wave energy residual of the fine and coarse propagated solutions. Several examples, including a wave speed with discontinuities, are provided to demonstrate the effectiveness of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call