Abstract

The novel enzyme benzylsuccinate synthase initiates anaerobic toluene metabolism by catalyzing the addition of toluene to fumarate, forming benzylsuccinate. Based primarily on its sequence similarity to the glycyl radical enzymes, pyruvate formate-lyase and anaerobic ribonucleotide reductase, benzylsuccinate synthase was speculated to be a glycyl radical enzyme. In this report we use EPR spectroscopy to demonstrate for the first time that active benzylsuccinate synthase from the denitrifying bacterium Azoarcus sp. strain T harbors an oxygen-sensitive stable organic free radical. The EPR signal of the radical was centered at g = 2.0021 and was characterized by a major 2-fold splitting of about 1.5 millitesla. The strong similarities between the EPR signal of the benzylsuccinate synthase radical and that of the glycyl radicals of pyruvate formate-lyase and anaerobic ribonucleotide reductase provide evidence that the benzylsuccinate synthase radical is located on a glycine residue, presumably glycine 828 in Azoarcus sp. strain T benzylsuccinate synthase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.