Abstract

Diferulic (DFA) and triferulic acids (TriFA) acylate and cross-link plant cell wall polysaccharides, thereby being important structural elements within the cell wall, also affecting physicochemical properties of the isolated polysaccharides. Due to the large number of potential regio- and configurational isomers and due to the fact that oligoferulic acids are not commercially available as standard compounds, analysis of oligoferulic acids after alkaline hydrolysis is challenging. Eighteen di- and triferulic acids were synthesized both non-labeled as well as 13C-labeled. By using these standard compounds, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) (electrospray ionization, negative mode)-based stable isotope dilution approach was developed, fully validated and applied to plant materials. Whereas this stable isotope dilution approach is most useful to analyze plant materials with complex matrices (especially lignified tissues), less complicated matrices may not require this approach. Therefore, an alternative LC-MS/MS-based method that is based on using a single internal standard compound only was developed, too, validated, and compared to the stable isotope dilution approach. Although the stable isotope dilution approach appears to be superior, plant samples with simple matrices can also be screened by using the single internal standard method developed here.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call