Abstract
BthA is a diheme enzyme that is a member of the bacterial cytochrome c peroxidase superfamily, capable of generating a highly unusual Fe(IV)Fe(IV)═O oxidation state, known to be responsible for long-range oxidative chemistry in the enzyme MauG. Here, we show that installing a canonical Met ligand in lieu of the Tyr found at the heme of MauG associated with electron transfer, results in a construct that yields an unusually stable Fe(IV)═O porphyrin at the peroxidatic heme. This state is spontaneously formed at ambient conditions using either molecular O2 or H2O2. The resulting data illustrate how a ferryl iron, with unforeseen stability, may be achieved in biology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.