Abstract
Malathion causes a serious threat to human health due to its widespread use in the environment. Herein, a novel and stable smartphone-integrated colorimetric biosensor for malathion detection is firstly established based on aptamer-enhanced laccase-mimicking activity. The results indicate that the M17-F aptamer can increase the affinity of Ag2O nanoparticles to the substrate 2,4-dichlorophenol and enhance their laccase-mimicking activity. Thus, abundant semiquinone radicals are produced in the catalytic system, which are combined with chromogenic agent to generate dark red products. The corresponding RGB values for the colour change of the solution can be easily obtained using smartphones, which is used for the rapid detection of malathion. The established biosensor for malathion has a limit of detection as low as 5.85 nmol·L−1, and displays good selectivity for other competitive pesticides. Moreover, further studies have verified the applicability of the biosensor in actual samples, indicating that it may have the potential for application in malathion detection in food.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.