Abstract

Transient acoustic radiation from a closed axisymmetric three-dimensional object is modeled using the time domain boundary element method. The widely reported instability problems are overcome by reformulating the integral equation to obtain a Burton and Miller type equation in the time domain. The stability of such an approach is mathematically justified and supported by subsequent numerical results. The hypersingular integrals which arise are evaluated using a method valid for any surface discretization. Numerical results for the radiation of a spherical wave are presented and compared with an exact solution. The accuracy and stability of the results are verified for several geometrically different radiating objects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.